Fast Voltage and Power Flow Contingency Ranking Using Enhanced Radial Basis Function Neural Network
Authors
Abstract:
Deregulation of power system in recent years has changed static security assessment to the major concerns for which fast and accurate evaluation methodology is needed. Contingencies related to voltage violations and power line overloading have been responsible for power system collapse. This paper presents an enhanced radial basis function neural network (RBFNN) approach for on-line ranking of the contingencies expected to cause steady state bus voltage and power flow violations. Hidden layer units (neurons) have been selected with the growing and pruning algorithm which has the superiority of being able to choose optimal unit’s center and width (radius). A feature preference technique-based class separability index and correlation coefficient has been employed to identify the relevant inputs for the neural network. The advantages of this method are simplicity of algorithm and high accuracy in classification. The effectiveness of the proposed approach has been demonstrated on IEEE 14-bus power system.
similar resources
Fast Voltage and Power Flow Contingencies Ranking using Enhanced Radial Basis Function Neural Network
Deregulation of power system in recent years has changed static security assessment to the major concerns for which fast and accurate evaluation methodology is needed. Contingencies related to voltage violations and power line overloading have been responsible for power system collapse. This paper presents an enhanced radial basis function neural network (RBFNN) approach for on-line ranking of ...
full textCoherency-based fast voltage contingency ranking employing counterpropagation neural network
Power system security is one of the major concerns in competitive electricity markets driven by trade demands and regulations. If the system is found to be insecure, timely corrective measures need to be taken to prevent system collapse. This paper presents an approach based on a counterpropagation neural network (CPNN) to identify and rank the contingencies expected to reduce or eliminate the ...
full textOnline Power System Contingency Screening and Ranking Methods Using Radial Basis Neural Networks
This paper presents a supervising learning approach using Multilayer Feed Forward Neural Network(MFFN) and Radial Basis Fuction Neural Network(RBFN) to deal with fast and accurate static security assessment (SSA) and contingency analysis of a large electric power systems. The degree of severity of contingencies is measured by two scalar performance indices (PIs): Voltage-reactive power performa...
full textCascade fuzzy neural network based voltage contingency screening and ranking
A method based on cascade fuzzy neural network (CFNN) comprising of a filter module and ranking module is proposed for online voltage contingency screening and ranking under known but uncertain loads. A new fuzzy performance index, which combines voltage violations and voltage stability margin following a contingency, is proposed for effective voltage security ranking. All the selected continge...
full textTraining Radial Basis Function Neural Network using Stochastic Fractal Search Algorithm to Classify Sonar Dataset
Radial Basis Function Neural Networks (RBF NNs) are one of the most applicable NNs in the classification of real targets. Despite the use of recursive methods and gradient descent for training RBF NNs, classification improper accuracy, failing to local minimum and low-convergence speed are defects of this type of network. In order to overcome these defects, heuristic and meta-heuristic algorith...
full textArtificial neural network model for voltage security based contingency ranking
The continual increase in demand for electrical energy and the tendency towards maximizing economic benefits in power transmission system has made real-time voltage security analysis an important issue in the operation of power system. The most important task in real time security analysis is the problem of identifying the critical contingencies from a large list of credible contingencies and r...
full textMy Resources
Journal title
volume 7 issue 4
pages 273- 282
publication date 2011-12
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023